図の容易軸方向に平行に磁界を印加する場合

磁化をM_s、異方性エネルギー定数をK_uとし、外部磁界Hを容易軸に対して平行
に印加する。
図のように角度θをとると、単位体積あたりのエネルギーEは、

$$E = M_sH\cos\theta + K_u\sin^2\theta$$

で与えられる。右辺第1項はゼemanエネルギー、第2項は異方性エネルギーである。

$$\frac{E}{2K_u} = \frac{M_sH}{2K_u}\cos\theta + \frac{1}{2}\sin^2\theta = \frac{H}{H_k}\cos\theta + \frac{1}{2}\sin^2\theta$$

となる。

$$\frac{\partial}{\partial \theta} \frac{E}{2K_u} = -\frac{H}{H_k}\sin\theta + \sin\theta\cos\theta = \sin\theta(-\frac{H}{H_k} + \cos\theta) = 0$$

より、エネルギー極値が、

$$\sin\theta = 0$$

あるいは、

$$-\frac{H}{H_k} + \cos\theta = 0$$

すなわち、

$$\theta = 0, \theta = \pi$$

あるいは、
\[\cos \theta = \frac{H}{H_k} \]

で現われる。
これらの関係を下図に示す。

- \(H / H_k = 0 \)
 三角方程より \(\theta = 0, \theta = \pi \) でエネルギー \(E/2K_u \) が極小, 三角方程より \(\cos \theta = 0, \theta = \pi/2 \) で \(E/2K_u \) が極大となる.
 そこで, 初期状態として磁化の角度を \(\theta = 0 \) とする.

- \(H / H_k = 0.5 \)
 三角方程より \(\theta = 0, \theta = \pi \) で \(E/2K_u \) が極小, 三角方程より \(\cos \theta = 0.5, \theta = \pi/3 \) で \(E/2K_u \) が極大となる.
 \(\theta = 0 \) から \(\theta = \pi \) で \(E/2K_u \) の極大が存在するので, \(\theta = 0 \) から \(\theta = \pi \) で \(E/2K_u \) には磁化状態が遷移しないで, \(\theta = 0 \) のままでいる.

- \(H / H_k = 1.0 \)
 三角方程において, \(\theta = 0 \) では \(E/2K_u \) が極大, \(\theta = \pi \) で \(E/2K_u \) が極小となり, 三角方程においては, \(\cos \theta = 1.0, \theta = 0 \) で \(E/2K_u \) が極大となる.
 したがって, \(\theta = 0 \) から \(\theta = \pi \) で \(E/2K_u \) には磁化状態が遷移する.

- \(H / H_k > 1.0 \)
 三角方程において, \(\theta = 0 \) では \(E/2K_u \) が極大, \(\theta = \pi \) で \(E/2K_u \) が極小となる. 一方, 三角方程は \(\cos \theta = H / H_k \) であるので, \(H / H_k > 1.0 \) では \(\theta \) は存在しない.
結局，磁化は$\theta = \pi \equiv 180$ deg のままである。

以上の結果から、$M - H$ ループを描くと以下の図となる。

□. 容易軸方向に垂直に磁界を印加する場合

次に，外部磁界H を容易軸に対して垂直に印加する。
□□式の代わりに，

$$\frac{E}{2K_u} = \frac{M_s H}{2K_u} \cos \theta - \frac{1}{2} \sin^2 \theta = \frac{H}{H_k} \cos \theta - \frac{1}{2} \sin^2 \theta$$

となり，□□式の代わりに，

$$\frac{\partial}{\partial \theta} \frac{E}{2K_u} = - \frac{H}{H_k} \sin \theta - \sin \theta \cos \theta = \sin \theta \left(- \frac{H}{H_k} - \cos \theta \right) = 0$$

となる。
したがって，□□□□式，□□□□式の代わりに，

$$\theta = 0 \ , \ \theta = \pi$$
あるいは、

\[
\cos \theta = -\frac{H}{H_k}
\]

が得られる。
これらの関係を下図に示す。

\[
\frac{E}{2K_u} = \frac{M_s H \cos \theta - \frac{1}{2} \sin^2 \theta}{H_k} = \frac{H \cos \theta - \frac{1}{2} \sin^2 \theta}{H_k}
\]

・ \(H/H_k = 0 \)
 もっとも \(\theta = 0, \theta = \pi \) でエネルギー \(E/2K_u \) が極大、 \(\theta = \pi/2 \) で \(E/2K_u \) が極小となる。

そこで、初期状態として磁化の角度を \(\theta = \pi/2 \) で \(90 \) deg とする。

・ \(H/H_k = 0.5 \)
 やはり、もっとも \(\theta = 0, \theta = \pi \) で \(E/2K_u \) が極大、 \(\theta = \pi/2 \) で \(E/2K_u \) が極小となる。
 \(\theta = \pi/2 \) で \(90 \) deg であり \(\theta = 2\pi/3 \) で \(120 \) deg の方が \(E/2K_u \) が低いので、 \(\theta = \pi/2 \)
 \(90 \) deg から \(\theta = 2\pi/3 \) で \(120 \) deg に、磁化が回転する。

・ \(H/H_k = 1.0 \)
 もっとも \(\theta = 0 \) では \(E/2K_u \) が極大、 \(\theta = \pi \) で \(E/2K_u \) が極小となり、\(\theta = \pi/2 \) においては、 \(\cos \theta = -1.0 \) で \(E/2K_u \) が極小となる。
 したがって、 \(\theta = 2\pi/3 \) で \(120 \) deg から \(\theta = \pi \) で \(180 \) deg に、さらに磁化が回転する。
\(H / H_k > 1.0 \) \(\Rightarrow H / H_k = 1.5, \ 2.0 \)

\(\theta = 0 \) では \(E/2K_u \) が最大、\(\theta = \pi = 180 \ deg \) では \(E/2K_u \) が最小となる。一方、\(\cos \theta = H / H_k \) であるので、\(H / H_k > 1.0 \) では \(\theta \) は存在しない。

結局、磁化は \(\theta = \pi = 180 \ deg \) のままである。

\(-1.0 \leq H / H_k \leq 1.0\)，すなわち \(-H_k \leq H \leq H_k\) では\(\text{式} \)が解となる。\(M - H \)ループの縦軸は \(M \) の \(H \) 方向成分

\[M \cos \theta \]

を測定するが、\(\text{式} \)より、

\[M \cos \theta = -M_s \frac{H}{H_k} \]

となるので、\(-H_k \leq H \leq H_k\) では \(M - H \)ループは \(H \) に比例する。\(H = \pm H_k \) で \(M - H \)ループは飽和し、それぞれ \(\pm M_s \) に達する。

以上の結果から、\(M - H \)ループを描くと以下の図となる。